53 research outputs found

    MEGARA focal plane subsystems

    Get PDF
    MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is the future optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) for GTC. The Fiber Units are placed at one Folded Cassegrain focus and feed the spectrograph located on a Nasmyth-type platform. This paper summarizes the status of the design of the MEGARA Folded Cassegrain Subsystems after the PDR (held on March 2012), as well as the prototyping that has been carried out during this phase. The MEGARA Fiber Unit has two IFUs: a Large Compact Bundle covering 12.5 arcsec x 11.3 arcsec on sky (100 microns fiber-core), and a Small Compact Bundle, of 8.5 arcsec x 6.7 arcsec (70 microns fiber-core), plus a Fiber MOS positioner, able to place up to 100 mini-bundles 7 fibers each (100 microns fiber-core) in MOS configuration within a 3.5arcmin x 3.5arcmin FOV. A field lens provides a telecentric focal plane where the fibers are located. Microlens arrays couple the telescope beam to the collimator focal ratio at the entrance of the fibers (providing the f/17 to f/3 focal ratio reduction to enter into the fibers). Finally, the fibers, organized in bundles, end in the pseudo-slit plate, which will be placed at the entrance focal plane of the MEGARA spectrographs

    An 8-mm diameter fibre robot positioner for massive spectroscopy surveys

    Get PDF
    This article has been accepted for publication in Monthly Notices of Royal Astronomical Society © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedMassive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07 arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic InstrumentWe acknowledge support from the Spanish MICINNs Consolider-Ingenio 2010 Program me under grant MultiDark CSD2009-00064, HEPHACOS S2009/ESP-1473, and MINECO Centro de Excelencia Severo Ochoa Programme under grant SEV-2012-0249. We also thank the support from a CSIC-AVS contract through MICINN grant AYA2010-21231-C02- 01, and CDTI grant IDC-20101033; and support from the Spanish MINECO research grants AYA2012-31101 and FPA2012-34694. JPK, PH and LM acknowledge support from the ERC advanced grant LIDA and from an SNF Interdisciplinary grant

    An 8-mm diameter fibre robot positioner for massive spectroscopy surveys

    Get PDF
    Massive spectroscopic survey are becoming trendy in astrophysics and cosmology, as they can address new fundamental knowledge such as understanding the formation of the Milky Way and probing the nature of the mysterious dark energy. To enable massive spectroscopic surveys, new technology has been developed to place thousands of optical fibres at a given position on a focal plane. This technology needs to be: (1) accurate, with micrometer positional accuracy; (2) fast to minimize overhead; (3) robust to minimize failure; and (4) low cost. In this paper, we present the development, properties, and performance of a new single 8-mm in diameter fibre positioner robot, using two 4-mm DC-brushless gearmotors, that allows us to achieve accuracies up to 0.07arcsec (5 μm). This device has been developed in the context of the Dark Energy Spectroscopic Instrument.

    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    Get PDF
    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected

    Hallazgo de una especie de hongo americano en el País Vasco

    No full text
    corecore